Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626679

RESUMO

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Assuntos
Cânfora , Cânfora/análogos & derivados , Peixe-Zebra , Animais , Masculino , Feminino , Cânfora/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Reprodução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
2.
Sci Total Environ ; 921: 171109, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387563

RESUMO

Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 µm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.


Assuntos
Doenças Retinianas , Poluentes Químicos da Água , Humanos , Corpo Vítreo/química , Microplásticos , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise
3.
Environ Health Perspect ; 132(2): 27011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381479

RESUMO

BACKGROUND: Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES: This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS: We assessed the impact of polystyrene nanospheres (PNSs; 50 nm, 1.0mg/L) on HMS-induced MCF-7 cell proliferation (HMS: 0.01-1µM, equivalent to 2.62-262µg/L) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262-262µg/L) with or without PNSs (50 nm, 1.0mg/L) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS: Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17ß-estradiol (E2) release in females. Conversely, males showed lower testosterone, E2, and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION: PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.


Assuntos
Nanosferas , Adulto , Feminino , Humanos , Masculino , Animais , Peixe-Zebra , Células MCF-7 , Poliestirenos/toxicidade , Estrogênios , Glucocorticoides , Esteroides
4.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993864

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Assuntos
Melatonina , Neuroblastoma , Humanos , Camundongos , Animais , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Poliestirenos/metabolismo , Microplásticos , Neurônios Dopaminérgicos/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Plásticos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
5.
Environ Pollut ; 335: 122260, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506809

RESUMO

4-Methylbenzylidene camphor (4-MBC), an emerging contaminant, is a widely-used ultraviolet (UV) filter incorporated into cosmetics because it protects the skin from UV rays and counters photo-oxidation. Despite the well-established estrogenic activity of 4-MBC, the link between this activity and its effects on neurobehavior and the liver remains unknown. Thus, we exposed zebrafish larvae to environmentally relevant concentrations of 4-MBC with 1.39, 4.17, 12.5 and 15.4 µg/mL from 3 to 5 days postfertilization. We found that 4-MBC produced an estrogenic effect by intensifying fluorescence in the transgenic zebrafish, which was counteracted by co-exposure with estrogen receptor antagonist. 4-MBC-upregulated estrogen receptor alpha (erα) mRNA, and an interaction between 4-MBC and ERα suggested ERα's involvement in the 4-MBC-induced estrogenic activity. RNA sequencing unearthed 4-MBC-triggered responses in estrogen stimulus and lipid metabolism. Additionally, 4-MBC-induced hypoactivity and behavioral phenotypes were dependent on the estrogen receptor (ER) pathway. This may have been associated with the disruption of acetylcholinesterase and acetylcholine activities. As a result, 4-MBC increased vitellogenin expression and caused lipid accumulation in the liver of zebrafish larvae. Collectively, this is the first study to report 4-MBC-caused estrogenic effects through the brain-liver-gonad axis. It provides novel insight into how 4-MBC perturbs the brain and liver development.


Assuntos
Estrogênios , Peixe-Zebra , Animais , Estrogênios/farmacologia , Peixe-Zebra/metabolismo , Receptor alfa de Estrogênio/metabolismo , Acetilcolinesterase/metabolismo , Protetores Solares/toxicidade , Gônadas/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Cânfora/toxicidade , Fígado/metabolismo , Encéfalo/metabolismo
6.
Adv Sci (Weinh) ; 10(19): e2205876, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37144527

RESUMO

Exposure to micro- and nanoplastics (MNPs) is common because of their omnipresence in environment. Recent studies have revealed that MNPs may cause atherosclerosis, but the underlying mechanism remains unclear. To address this bottleneck, ApoE-/- mice are exposed to 2.5-250 mg kg-1 polystyrene nanoplastics (PS-NPs, 50 nm) by oral gavage with a high-fat diet for 19 weeks. It is found that PS-NPs in blood and aorta of mouse exacerbate the artery stiffness and promote atherosclerotic plaque formation. PS-NPs activate phagocytosis of M1-macrophage in the aorta, manifesting as upregulation of macrophage receptor with collagenous structure (MARCO). Moreover, PS-NPs disrupt lipid metabolism and increase long-chain acyl carnitines (LCACs). LCAC accumulation is attributed to the PS-NP-inhibited hepatic carnitine palmitoyltransferase 2. PS-NPs, as well as LCACs alone, aggravate lipid accumulation via upregulating MARCO in the oxidized low-density lipoprotein-activated foam cells. Finally, synergistic effects of PS-NPs and LCACs on increasing total cholesterol in foam cells are found. Overall, this study indicates that LCACs aggravate PS-NP-induced atherosclerosis by upregulating MARCO. This study offers new insight into the mechanisms underlying MNP-induced cardiovascular toxicity, and highlights the combined effects of MNPs with endogenous metabolites on the cardiovascular system, which warrant further study.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Microplásticos , Poliestirenos/toxicidade , Aterosclerose/etiologia , Aorta
7.
Toxicol Lett ; 380: 40-52, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028497

RESUMO

1,2-Dichloroethane (1,2-DCE) is a pervasive environmental pollutant found in ambient and residential air, as well as ground and drinking water. Brain edema is the primary pathological consequence of 1,2-DCE overexposure. We found that microRNA (miRNA)-29b dysregulation after 1,2-DCE exposure can aggravate brain edema by suppressing aquaporin 4 (AQP4). Moreover, circular RNAs (circRNAs) can regulate the expression of downstream target genes through miRNA, and affect protein function. However, circRNAs' role in 1,2-DCE-induced brain edema via miR-29b-3p/AQP4 axis remains unclear. To address the mechanism's bottleneck, we explored the circRNA-miRNA-mRNA network underlying 1,2-DCE-driven astrocyte swelling in SVG p12 cells by circRNA sequencing, electron microscopy and isotope 3H labeling combined with the 3-O-methylglucose uptake method. The results showed that 25 and 50 mM 1,2-DCE motivated astrocyte swelling, characterized by increased water content, enlarged cell vacuoles, and mitochondrial swelling. This was accompanied by miR-29b-3p downregulation and AQP4 upregulation. We verified that AQP4 were negatively regulated by miR-29b-3p in 1,2-DCE-induced astrocyte swelling. Also, circRNA sequencing highlighted that circBCL11B was upregulated by 1,2-DCE. This was manifested as circBCL11B overexpression playing an endogenous competitive role via upregulating AQP4 by binding to miR-29b-3p, thus leading to astrocyte swelling. Conversely, circBCL11B knockdown reversed the 1,2-DCE-motivated AQP4 upregulation and alleviated the cell swelling. Finally, we demonstrated that the circBCL11B was targeted to miR-29b-3p by fluorescence in situ hybridization and dual-luciferase reporter assay. In conclusion, our findings indicate that circBCL11B acts as a competing endogenous RNA to facilitate 1,2-DCE-caused astrocyte swelling via miR-29b-3p/AQP4 axis. These observations provide new insight into the epigenetic mechanisms underlying 1,2-DCE-induced brain edema.


Assuntos
Edema Encefálico , MicroRNAs , Humanos , RNA Circular/genética , Edema Encefálico/induzido quimicamente , Edema Encefálico/genética , Edema Encefálico/patologia , Astrócitos/metabolismo , Aquaporina 4/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo
8.
Ecotoxicol Environ Saf ; 252: 114563, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701876

RESUMO

Bisphenol A (BPA), one of the typical environmental endocrine disruptors (EEDs), can promote the proliferation and migration of cancer cells, but the mechanism of which remains largely unclear. Exosome secretion plays an important role in the stress response of cells to environmental stimuli. This study was designed to explore whether exosome secretion was involved in the toxic effect of BPA on the proliferation and migration of MCF-7 cells, and the related mechanism. Our data shows that the IC50 value of MCF-7 exposure to BPA was about 65.82 µM. The exposure of MCF-7 to 10 µM BPA resulted in a decreased miR-26b expression and the activation of miR-26b/Rab-31 pathway, consequently, the number and activity of lysosomes decreased, the secretion of exosomes increased, cell proliferation and migration were enhanced obviously. Interestingly, miR-26b mimic up-regulated the number and activity of lysosomes via miR-26b/miR-31 pathway, exosome secretion was down-regulated, cell proliferation and migration decreased. Further, when GW4869 was used to directly inhibit the exosome secretion of MCF-7 treated with BPA, their proliferation and migration were down-regulated. Herein, we concluded that the stimulating effect of BPA on the proliferation and migration of MCF-7 cells was associated with the lysosome - related exosome secretion via miR-26b / Rab31 pathway.


Assuntos
Exossomos , MicroRNAs , Humanos , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/fisiologia , Lisossomos/metabolismo , Linhagem Celular Tumoral , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
Drug Resist Updat ; 66: 100908, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493511

RESUMO

Non-small cell lung cancer is the leading cause of cancer related mortality worldwide, and lung adenocarcinoma (LUAD) is one of the most common subtypes. The role of N6-methyladenosine (m6A) modification in tumorigenesis and drug resistance in LUAD remains unclear. In this study, we evaluated the effects of vir-like m6A methyltransferase-associated protein (KIAA1429) depletion on proliferation, migration, invasion, and drug resistance of LUAD cells, and identified m6A-dependent downstream genes influenced by KIAA1429. We found that KIAA1429 activated Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway as a novel signaling event, which is responsible for tumorigenesis and resistance to gefitinib in LUAD cells. KIAA1429 and MAP3K2 showed high expression in LUAD patients' tissues. Knockdown of KIAA1429 inhibited MAP3K2 expression in an m6A methylation-dependent manner, restraining the progression of LUAD cells and inhibiting growth of gefitinib-resistant HCC827 cells. KIAA1429 positively regulated MAP3K2 expression, activated JNK/ MAPK pathway, and promoted drug resistance in gefitinib-resistant HCC827 cells. We reproduced the in vitro results in nude mouse xenografted with KIAA1429 knockdown cells. Our study showed that the mechanism of m6A KIAA1429-mediated gefitinib resistance in LUAD cells occurs by activating JNK/ MAPK signaling pathway. These findings provide potential targets for molecular therapy and clinical treatment in LUAD patients with gefitinib resistance.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
10.
Toxicology ; 478: 153293, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35995123

RESUMO

Cassiae semen (CS), a traditional Chinese medicine, has various bioactivities in preclinical and clinical practice. Aurantio-obtusin (AO) is a major anthraquinone (AQ) ingredient derived from CS, and has drawn public concerns over its potential hepatotoxicity. We previously found that AO induces hepatic necroinflammation by activating NOD-like receptor protein 3 inflammasome signaling. However, the mechanisms contributing to AO-motivated hepatotoxicity remain unclear. Herein, we evaluated hepatotoxic effects of AO on three liver cell lines by molecular and biochemical analyses. We found that AO caused cell viability inhibition and biochemistry dysfunction in the liver cells. Furthermore, AO elevated reactive oxygen species (ROS), followed by mitochondrial dysfunction (decreases in mitochondrial membrane potential and adenosine triphosphate) and apoptosis (increased Caspase-3, Cleaved caspase-3, Cytochrome c and Bax expression, and decreased Bcl-2 expression). We also found that AO increased the lipid peroxidation (LPO) and enhanced ferroptosis by activating cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element-binding (CREB) pathway (increases in PKA, p-CREB, acyl-CoA synthetase long chain family member 4). Based on these results, we used an AOP framework to explore the mechanisms underlying AO's hepatotoxicity. It starts from molecular initiating event (ROS), and follows two critical toxicity pathways (i.e., mitochondrial dysfunction-mediated apoptosis and LPO-enhanced ferroptosis) over a series of key events (KEs) to the adverse outcome of hepatotoxicity. The results of an assessment confidence in the adverse outcome pathway (AOP) framework supported the evidence concordance in dose-response, temporal and incidence relationships between KEs in AO-induced hepatotoxicity. This study's findings offer a novel toxicity pathway network for AO-caused hepatotoxicity.


Assuntos
Rotas de Resultados Adversos , Doença Hepática Induzida por Substâncias e Drogas , Antraquinonas/química , Antraquinonas/farmacologia , Caspase 3 , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Espécies Reativas de Oxigênio
11.
Ecotoxicol Environ Saf ; 229: 113084, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915223

RESUMO

The deficiency of effective biomarker for the toxic effects of water pollutants greatly limits the application of biological monitoring. This study aimed to investigate the possibility of circulating exosomes of indigenous fish acting as biomarker for the ecotoxicity effect of water environment. The Helong Reservoir in Guangzhou, China, was chosen as the investigating field, of which the water quality belongs to Class V (2013) (GB 3838-2002, China). The clean drinking water source of the upper reaches of the Liuxihe Reservoir was selected as the control. Indigenous fishes including Oreochromis niloticus (Nile tilapia), Labeo rohita (Rohu), Carassius auratus (Crucian carp) were sampled during the period from July 2020 to April 2021. Circulating exosomes of fish samples were isolated by using ultracentrifugation, characterized with transmission electron microscopy (TEM) and quantified by using bicinchoninic acid (BCA) assay. Oxidative stress, DNA and chromosome damage in liver, kidney, brain, gill and blood of fish samples were measured. The results showed that there were significant differences in superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) contents, DNA and chromosome damage in fish samples between the Helong Reservoir and the control. Interestingly, there were also significant differences in circulating exosome levels of fish samples between them. Our data suggested that circulating exosome level of indigenous fish may be a novel biomarker for the ecotoxicity effects of water environment.


Assuntos
Ciclídeos , Exossomos , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Ciclídeos/metabolismo , Carpa Dourada/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
12.
Environ Toxicol Chem ; 40(7): 1919-1927, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33760286

RESUMO

The present study was conducted to assess the genotoxic potential of water from the Helong Reservoir, which was designated as a strategic drinking water source by the Guangdong Provincial Government of China in October 2016. Four kinds of common indigenous fish samples (Labeo rohita, Cirrhinus molitorella, red tilapia, and Oreochromis niloticus) were collected at 6 sampling sites during the period from July to November 2020. Fish from the clean drinking water source of the upper reaches of the Liuxihe Reservoir in Guangzhou were collected as the control. Both the alkaline single cell gel electrophoresis assay and the micronucleus test were used to detect DNA damage and the micronucleus rate in erythrocytes of fish samples, respectively. The results indicated that there was a significant increase in comet tail length, Olive tail moment, and micronucleus rates of all fish samples compared with those of the control (p < 0.05). The order of sensitivity to DNA damage and micronucleus formation was Labeo rohita > Cirrhinus molitorella > red tilapia > Oreochromis niloticus. The results of the 2 kinds of experiments were in perfect agreement with each other. We conclude that there are obvious genotoxic effects from the water in the Helong Reservoir. As a strategic drinking water source, the safety of the Reservoir water quality should be considered. The local government should put the restoration of the Helong Reservoir water quality on the agenda as soon as possible. Environ Toxicol Chem 2021;40:1919-1927. © 2021 SETAC.


Assuntos
Cyprinidae , Tilápia , Poluentes Químicos da Água , Animais , Ensaio Cometa , Dano ao DNA , Eritrócitos , Testes para Micronúcleos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
J Appl Toxicol ; 41(2): 265-275, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32725655

RESUMO

Accumulating evidence reveals that exosome plays an important role in cell-to-cell communication in both physiological and pathological processes by transferring bioactive molecules. However, the role of exosomal secretion in the adaption of its source cells to the stimuli of environmental chemicals remains elusive. In this study, we revealed that the exposure of hydroquinone (HQ; the main bioactive metabolite of benzene) to human bronchial epithelial cells (16HBE) resulted in decreased ability of cell proliferation and migration, and simultaneously DNA damage and micronuclei formation. Interestingly, when exosomal secretion of HQ treated 16HBE cells was inhibited with the inhibitor GW4869, cellular proliferation and migration were further significantly reduced; concurrently, their DNA damage and micronuclei formation were both further significantly aggravated. Herein, we conclude that exosomal secretion of 16HBE cells may be an important self-protective function against the toxic effects induced by HQ.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Hidroquinonas/toxicidade , Humanos
14.
Int J Biol Macromol ; 165(Pt A): 591-600, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010266

RESUMO

A novel ethylenediaminetetraacetic acid (EDTA)-functionalized magnetic chitosan oligosaccharide and carboxymethyl cellulose (Fe3O4@CMCCOS-EDTA) nanocomposite adsorbent was successfully fabricated for Pb(II) adsorption. The adsorbent was characterized by Fourier transform infrared, and X-ray photoelectron spectroscopy was used to confirm successful EDTA modification and Pb(II) adsorption. Scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and thermogravimetric analysis were used to study the morphology and properties of magnetic particles. EDTA modification considerably improved the capacity of the adsorbent. The batch adsorption experiment results indicated that the pseudo-second-order (PSO) model and the Langmuir isotherm model reliably described the adsorption behavior. The maximum adsorption capacity (qm) for monolayer chemical adsorption was calculated to be 432.34 mg/g at the pH of 5 and temperature of 308 K. Notably, Fe3O4@CMCCOS-EDTA exhibited a high Pb(II) removal rate of ~100% using an initial metal ion solution of 100 mg/L and 200 mg/L.


Assuntos
Carboximetilcelulose Sódica/química , Quitosana/química , Ácido Edético/química , Chumbo/química , Nanocompostos/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção
15.
J Appl Toxicol ; 40(2): 224-233, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31468561

RESUMO

miR-221, an oncogenic microRNA, can promote cell proliferation and is highly expressed in various types of tumors. However, the role of exosomal miR-221 in benzene-caused carcinogenesis remains elusive. Our study was designed to investigate whether exosomes secreted by the hydroquinone (HQ; an active metabolite of benzene)-transformed malignant cells can transmit miR-221 to normal recipient cells and its possible effects on cell viability. Our investigation revealed that expression levels of miR-221 were significantly increased in HQ-transformed malignant cells relative to normal controls. Furthermore, exposure of control cells to exosomes that were derived from HQ-transformed malignant cells increased miR-221 levels and promoted their proliferation. Analyses of the biological potency of exosomes derived from HQ-transformed malignant cells in which miR-221 levels were decreased using an inhibitor, showed that both miR-221 levels and proliferation of recipient cells were decreased, but still were higher than those of normal 16HBE cells. Our study indicates that exosomal miR-221 derived from HQ-transformed malignant human bronchial epithelial cells is involved in the proliferation of recipient cells.


Assuntos
Brônquios/efeitos dos fármacos , Carcinogênese/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Exossomos/metabolismo , Hidroquinonas/toxicidade , Carcinogênese/genética , Exossomos/genética , Humanos , MicroRNAs
16.
Int J Biol Macromol ; 154: 1537-1547, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730966

RESUMO

A creative combination of chitosan with polyacrylic acid (PAA) improves the acidity resistance of chitosan and increases its potential in the field of adsorption. In order to facilitate recovery, magnetic nanoparticles were incorporated in CS-PAA to obtain a magnetic-CS-PAA (MCS-PAA) nanocomposite. The physical and chemical characteristics of the composite adsorbent MCS-PAA were determined by SEM, TEM, FTIR, EDX, XRD, and XPS. This environmental-friendly, magnetic, composite adsorbent showed significantly better adsorption performance than those of the individual adsorbents alone. The maximal adsorption capacity was 204.89 mg/g according to the Langmuir isotherm model, when the concentration of Pb(II) was 100 mg/L at the equilibrium time of 70 min. The main adsorption mechanism was the complexation between the carboxyl, amino, and hydroxyl groups in MCS-PAA and Pb(II). Further, introduction of PAA also improved the acid resistance of CS. The new adsorbent MCS-PAA is thus expected to facilitate a wider range of applications for chitosan in the adsorption of Pb(II).


Assuntos
Quitosana/química , Chumbo/química , Chumbo/isolamento & purificação , Imãs/química , Nanocompostos/química , Peptídeos/química , Água/química , Adsorção , Soluções
17.
Chemosphere ; 244: 125496, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812062

RESUMO

The gene encoding the tumor suppressor, phosphatase and tensin homolog (PTEN), located on chromosome 10, is frequently expressed at low levels in various tumors, resulting in the stimulation of cell proliferation and migration. However, the role of exosomal PTEN in cell-cell communication during the progress of benzene-induced carcinogenesis remains unclear. The goal of this study was to explore whether exosomes derived from normal human bronchial epithelial cells (16HBE) could transmit PTEN to hydroquinone-transformed malignant recipient cells (16HBE-t) and its possible effects on cell proliferation and migration. Consistent with PTEN expression being down-regulated in transformed cells, we found that its expression was significantly decreased in 16HBE-t relative to 16HBE cells and that purified exosomes secreted by 16HBE, up-regulated PTEN levels in recipient 16HBE-t cells. Thus, down-regulating their proliferation and migration. Further, when exosomes derived from 16HBE cells that had been treated with the PTEN inhibitor SF1670, were incubated with recipient 16HBE-t cells, they exhibited decreased PTEN levels, with a corresponding increase in their proliferation and migration. In conclusion, our study demonstrates that exosomes derived from 16HBE cells can down-regulate proliferation and migration of recipient 16HBE-t cells via transferring PTEN.


Assuntos
Proliferação de Células/fisiologia , Exossomos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Brônquios/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Humanos , Hidroquinonas/toxicidade , MicroRNAs/genética , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...